Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10617-10624, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948635

RESUMO

The development of quantum simulators, artificial platforms where the predictions of many-body theories of correlated quantum materials can be tested in a controllable and tunable way, is one of the main challenges of condensed matter physics. Here we introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials. We demonstrate that optical injection of quantum confined excitons in this system realizes the two main features that ubiquitously pervade the phase diagram of many quantum materials: collective phenomena, in which long-range orders emerge from incoherent fluctuations, and the excitonic Mott transition, which has one-to-one correspondence with the insulator-to-metal transition described by the repulsive Hubbard model in a magnetic field. Our results demonstrate that time-resolved experiments provide a quantum simulator that is able to span a parameter range relevant for a broad class of phenomena, such as superconductivity and charge-density waves.

2.
J Phys Chem Lett ; 14(23): 5343-5352, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276360

RESUMO

The cooling dynamics of individual gold nanodisks synthesized using colloidal chemistry and deposited on solid substrates with different compositions and thicknesses were investigated using optical time-resolved spectroscopy and finite-element modeling. Experiments demonstrate a strong substrate-dependence of these cooling dynamics, which require the combination of heat transfer at the nanodisk/substrate interface and heat diffusion in the substrate. In the case of nanodisks deposited on a thick sapphire substrate, the dynamics are found to be mostly limited by the thermal resistance of the gold/sapphire interface, for which a value similar to that obtained in the context of previous experiments on sapphire-supported single gold nanodisks produced by electron beam lithography is deduced. In contrast, the cooling dynamics of nanodisks supported by nanometric silica and silicon nitride membranes are much slower and largely affected by heat diffusion in the membranes, whose efficiency is strongly reduced as compared to the thick sapphire case.

3.
Photoacoustics ; 28: 100407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36263352

RESUMO

Generation of ultra high frequency acoustic waves in water is key to nano resolution sensing, acoustic imaging and theranostics. In this context water immersed carbon nanotubes (CNTs) may act as an ideal optoacoustic source, due to their nanometric radial dimensions, peculiar thermal properties and broad band optical absorption. The generation mechanism of acoustic waves in water, upon excitation of both a single-wall (SW) and a multi-wall (MW) CNT with laser pulses of temporal width ranging from 5 ns down to ps, is theoretically investigated via a multiscale approach. We show that, depending on the combination of CNT size and laser pulse duration, the CNT can act as a thermophone or a mechanophone. As a thermophone, the CNT acts as a nanoheater for the surrounding water, which, upon thermal expansion, launches the pressure wave. As a mechanophone, the CNT acts as a nanopiston, its thermal expansion directly triggering the pressure wave in water. Activation of the mechanophone effect is sought to trigger few nanometers wavelength sound waves in water, matching the CNT acoustic frequencies. This is at variance with respect to the commonly addressed case of water-immersed single metallic nano-objects excited with ns laser pulses, where only the thermophone effect significantly contributes. The present findings might be of impact in fields ranging from nanoscale non-destructive testing to water dynamics at the meso to nanoscale.

4.
Nat Commun ; 13(1): 3730, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764628

RESUMO

Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.

5.
Emerg Nurse ; 30(1): 25-31, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34435478

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) can result in severe pneumonia, leading to acute respiratory distress syndrome, which are treated using continuous positive airway pressure (CPAP). Patients must be evaluated quickly to commence early CPAP if required. AIM: To identify patients with COVID-19 in the emergency department (ED) who require early CPAP, using vital signs measurements during triage. METHOD: This was a retrospective, observational, single-centre cohort study of patients with COVID-19 admitted to the ED of a university hospital in Lombardy, Italy, between 21 February 2020 and 30 April 2020. These patients were divided into two groups: those who required CPAP and those did not require CPAP. Recordings of their vital signs were retrieved from triage medical records. The vital signs values recorded in the two groups on their arrival at the ED were compared. RESULTS: Of 601 patients, 120 (20%) required CPAP. It was identified that the typical characteristics of patients requiring early CPAP were: male (P=.013) with a median age of 68 years (P=.000), oxygen saturation of 92% (P=.000), temperature ≥38°C (P=.008), respiratory rate of 26 breaths per minute (P=.000) and had received pre-hospital oxygen therapy before arriving at the ED (P=.000). The CPAP group was divided into two subgroups: patients who had received pre-hospital oxygen therapy and those who had not. The median respiratory rate values between the two subgroups presented a statistically significant difference (P=.004). CONCLUSION: This study identified the characteristics of a typical patient with COVID-19 who requires early CPAP. Based on the results, the authors have devised a triage flow chart that uses selected vital signs measurements (oxygen saturation, respiratory rate and receipt of pre-hospital oxygen therapy) to identify patients requiring early CPAP. This flow chart should be trialled in a prospective study before it is used to inform clinical decision-making.


Assuntos
COVID-19 , Pressão Positiva Contínua nas Vias Aéreas , Sinais Vitais , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/terapia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saturação de Oxigênio , Estudos Prospectivos
6.
Nat Commun ; 12(1): 6904, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824212

RESUMO

Understanding the mechanism of heat transfer in nanoscale devices remains one of the greatest intellectual challenges in the field of thermal dynamics, by far the most relevant under an applicative standpoint. When thermal dynamics is confined to the nanoscale, the characteristic timescales become ultrafast, engendering the failure of the common description of energy propagation and paving the way to unconventional phenomena such as wave-like temperature propagation. Here, we explore layered strongly correlated materials as a platform to identify and control unconventional electronic heat transfer phenomena. We demonstrate that these systems can be tailored to sustain a wide spectrum of electronic heat transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the hydrodynamic regime, wave-like temperature oscillations are predicted up to room temperature. The interaction strength can be exploited as a knob to control the dynamics of temperature waves as well as the onset of different thermal transport regimes.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835879

RESUMO

Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and supercapacitors. The film porosity and morphology strongly affect nanoporous films mechanical properties, the knowledge of which is fundamental for designing films for specific applications. To unveil the relationships among the morphology, structure and mechanical response, a comprehensive and non-destructive investigation of a model system was sought. In this review, we examined the paradigmatic case of a nanoporous, granular, metallic ultrathin film with comprehensive bottom-up and top-down approaches, both experimentals and theoreticals. The granular film was made of Ag nanoparticles deposited by gas-phase synthesis, thus providing a solvent-free and ultrapure nanoporous system at room temperature. The results, bearing generality beyond the specific model system, are discussed for several applications specific to the morphological and mechanical properties of the investigated films, including bendable electronics, membrane separation and nanofluidic sensing.

8.
J Chem Phys ; 155(16): 164501, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717363

RESUMO

Impulsive stimulated thermal scattering (ISTS) allows one to access the structural relaxation dynamics in supercooled molecular liquids on a time scale ranging from nanoseconds to milliseconds. Till now, a heuristic semi-empirical model has been commonly adopted to account for the ISTS signals. This model implicitly assumes that the relaxation of specific heat, C, and thermal expansion coefficient, γ, occur on the same time scale and accounts for them via a single stretched exponential. This work proposes two models that assume disentangled relaxations, respectively, based on the Debye and Havriliak-Negami assumptions for the relaxation spectrum and explicitly accounting for the relaxation of C and γ separately in the ISTS response. A theoretical analysis was conducted to test and compare the disentangled relaxation models against the stretched exponential. The former models were applied to rationalize the experimental ISTS signals acquired on supercooled glycerol. This allows us to simultaneously retrieve the frequency-dependent specific heat and thermal expansion up to the sub-100 MHz frequency range and further to compare the fragility and time scale probed by thermal, mechanical, and dielectric susceptibilities.

9.
J Chem Phys ; 155(7): 074503, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418939

RESUMO

This work reports results on the simultaneous spectroscopy of the specific heat and thermal expansivity of glycerol by making use of a wideband time-resolved thermal lens (TL) technique. An analytical model is presented which describes TL transients in a relaxing system subjected to impulsive laser heating. Experimentally, a set of TL waveforms, from 1 ns to 20 ms, has been recorded for a glycerol sample upon supercooling, from 300 to 200 K. The satisfactory fitting of the TL signals to the model allows the assessment of relaxation strength and relaxation frequency of the two quantities up to sub-100 MHz, extending the specific heat and thermal expansion spectroscopy by nearly three and eight decades, respectively. Fragility values, extracted from the relaxation behavior of the specific heat and the thermal expansion coefficient, are found to be similar, despite a substantial difference in relaxation strength.

10.
Sarcoidosis Vasc Diffuse Lung Dis ; 38(2): e2021017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316257

RESUMO

BACKGROUND: Acute Hypoxemic Respiratory Failure is a common complication of SARS-CoV2 related pneumonia, for which non-invasive ventilation (NIV) with Helmet Continuous Positive Airway Pressure (CPAP) is widely used. The frequency of pneumothorax in SARS-CoV2 was reported in 0.95% of hospitalized patients in 6% of mechanically ventilated patients, and in 1% of a post-mortem case series. OBJECTIVES: Aim of our retrospective study was to investigate the incidence of pneumothorax and pneumomediastinum (PNX/PNM) in SARS-CoV2 pneumonia patients treated with Helmet CPAP. Moreover, we examined the correlation between PNX/PNM and Positive end-expiratory pressure (PEEP) values. METHODS: We collected data from patients admitted to "Luigi Sacco" University Hospital of Milan from 2 February to 5 May 2020 with SARS-CoV2 pneumonia requiring CPAP. Patients, who need NIV with bi-level pressure or endotracheal intubation (ETI) for any reason except those who needed ETI after PNX/PNM, were excluded. Population was divided in two groups according to PEEP level used (≤10 cmH2O and >10 cmH20). RESULTS: 154 patients were enrolled. In the overall population, 42 patients (27%) were treated with High-PEEP (>10 cmH2O), and 112 with Low-PEEP (≤10 cmH2O). During hospitalization 3 PNX and 2 PNM occurred (3.2%). Out of these five patients, 2 needed invasive ventilation after PNX and died. All the PNX/PNM occurred in the High-PEEP group (5/37 vs 0/112, p<0,001). CONCLUSION: The incidence of PNX appears to be lower in SARS-CoV2 than SARS and MERS. Considering the association of PNX/PNM with high PEEP we suggest using the lower PEEP as possible to prevent these complications.

11.
Ultrasonics ; 114: 106403, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677164

RESUMO

Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly. Each cluster is characterized by a fingerprint time-resolved trace, synthesizing the common features of the thermo-acoustics response of the composing elements. The protocol is robust and widely applicable, not relying on any specific knowledge of the physical mechanisms involved. The present route constitutes an alternative diagnostic tool for on-chip non-destructive testing of individual nano-objects.

12.
Sci Rep ; 10(1): 16230, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004805

RESUMO

The thermo-mechanical properties of streptavidin-conjugated gold nanospheres, adhered to a surface via complex molecular chains, are investigated by two-color infrared asynchronous optical sampling pump-probe spectroscopy. Nanospheres with different surface densities have been deposited and exposed to a plasma treatment to modify their polymer binding chains. The aim is to monitor their optical response in complex chemical environments that may be experienced in, e.g., photothermal therapy or drug delivery applications. By applying unsupervised learning techniques to the spectroscopic traces, we identify their thermo-mechanical response variation. This variation discriminates nanospheres in different chemical environments or different surface densities. Such discrimination is not evident based on a standard analysis of the spectroscopic traces. This kind of analysis is important, given the widespread application of conjugated gold nanospheres in medicine and biology.

13.
ACS Nano ; 14(10): 13602-13610, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33054175

RESUMO

The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled Mie resonances, the ultrafast modulation of the transmittivity is completely reversed with respect to what is usually observed in nanoparticles with different sizes, in bulk systems, and in thin films. The interplay between chemical, geometrical, and ultrafast tuning offers an additional control parameter with impact on nanoantennas and ultrafast optical switches.

14.
Photoacoustics ; 20: 100199, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32874914

RESUMO

We investigate the optical wavelength dependence of the photoacoustic (PA) signal, detected with bandwidth (BW) in the MHz range, of gold nanospheres (NSs) immersed in water upon illumination with ns laser pulses. We compare the wavelength dependence of the PA signal (within the MHz BW) with the one of the optical absorption coefficient as determined from optical transmission measurements. Thermal boundary conductance (TBC) at the gold-water interface is taken into account, as well as the temperature dependence of the thermal expansion coefficient of water. The effects of NS size and laser pulse duration on the PA signal are also explored. The PA signal is investigated with an opto-thermo-acoustic model considering light absorption in gold NS and in a surrounding water shell.

15.
Materials (Basel) ; 13(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046363

RESUMO

Antimicrobial coatings are a promising strategy to counteract the spreading of multi-drug-resistant pathogens through cross-contamination of surfaces. Coatings with nanostructured characteristics can exploit the different antimicrobial mechanisms of nanomaterials provided the composition, the morphology and the mechanical properties of the film can be tuned by the specific synthesis methods. This review addresses the synthesis of antibacterial nanostructured coatings with a focus on physical synthesis methods. After a short description of the bacteria-NP interaction mechanism, leading to the killing of cells, paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed, with an emphasis on the possibility of combining different elements into the coating to widen the bactericidal spectrum.

16.
Phys Rev Lett ; 125(26): 265901, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449778

RESUMO

The temperonic crystal, a periodic structure with a unit cell made of two slabs sustaining temperature wavelike oscillations on short timescales, is introduced. The complex-valued dispersion relation for the temperature scalar field is investigated for the case of a localized temperature pulse. The dispersion discloses frequency gaps, tunable upon varying the slabs' thermal properties. Results are shown for the paradigmatic case of a graphene-based temperonic crystal. The temperonic crystal extends the concept of superlattices to the realm of temperature waves, allowing for coherent control of ultrafast temperature pulses in the hydrodynamic regime at above liquid nitrogen temperatures.

17.
Materials (Basel) ; 12(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683526

RESUMO

Random assemblies of vertically aligned core-shell GaAs-AlGaAs nanowires displayed an optical response dominated by strong oscillations of the reflected light as a function of the incident angle. In particular, angle-resolved specular reflectance measurements showed the occurrence of periodic modulations in the polarization-resolved spectra of reflected light for a surprisingly wide range of incident angles. Numerical simulations allowed for identifying the geometrical features of the core-shell nanowires leading to the observed oscillatory effects in terms of core and shell thickness as well as the tapering of the nanostructure. The present results indicate that randomly displaced ensembles of nanoscale heterostructures made of III-V semiconductors can operate as optical metamirrors, with potential for sensing applications.

18.
J Phys Chem Lett ; 10(18): 5372-5380, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31449419

RESUMO

The plasmonic and vibrational properties of single gold nanodisks patterned on a sapphire substrate are investigated via spatial modulation and pump-probe optical spectroscopies. The features of the measured extinction spectra and time-resolved signals are highly sensitive to minute deviations of the nanodisk morphology from a perfectly cylindrical one. An elliptical nanodisk section, as compared to a circular one, lifts the degeneracy of the two nanodisk in-plane dipolar surface plasmon resonances, which can be selectively excited by controlling the polarization of the incident light. This splitting effect, whose amplitude increases with nanodisk ellipticity, correlates with the detection of additional vibrational modes in the context of time-resolved spectroscopy. Analysis of the measurements is performed through the combination of optical and acoustic numerical models. This allows us first to estimate the dimensions of the investigated nanodisks from their plasmonic response and then to compare the measured and computed frequencies of their detectable vibrational modes, which are found to be in excellent agreement. This study demonstrates that single-particle optical spectroscopies are able to provide access to fine morphological characteristics, representing in this case a valuable alternative to traditional techniques aimed at postfabrication inspection of subwavelength nanodevice morphology.

19.
Nanoscale ; 11(4): 1626-1635, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644952

RESUMO

Bactericidal nanoparticle coatings are very promising for hindering the indirect transmission of pathogens through cross-contaminated surfaces. The challenge, limiting their employment in nosocomial environments, is the ability of tailoring the coating's physicochemical properties, namely, composition, cytotoxicity, bactericidal spectrum, adhesion to the substrate, and consequent nanoparticles release into the environment. We have engineered a new family of nanoparticle-based bactericidal coatings comprising Ag, Cu, and Mg and synthesized by a green gas-phase technique. These coatings present wide-spectrum bactericidal activity on both Gram-positive and Gram-negative reference strains and tunable physicochemical properties of relevance in view of their "on-field" deployment. The link between material and functional properties is rationalized based on a multidisciplinary and multitechnique approach. Our results pave the way for engineering biofunctional, fully tunable nanoparticle coatings, exploiting an arbitrarily wide number of elements in a straightforward, eco-friendly, high-throughput, one-step process.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HeLa , Humanos , Magnésio/química , Testes de Sensibilidade Microbiana , Porosidade , Prata/química , Propriedades de Superfície
20.
ACS Appl Mater Interfaces ; 10(33): 27947-27954, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30039696

RESUMO

Accessing fluid infiltration in nanogranular coatings is an outstanding challenge, of relevance for applications ranging from nanomedicine to catalysis. A sensing platform, allowing quantifying the amount of fluid infiltrated in a nanogranular ultrathin coating, with thickness in the 10-40 nm range, is here proposed and theoretically investigated by multiscale modeling. The scheme relies on impulsive photoacoustic excitation of hypersonic mechanical breathing modes in engineered gas-phase-synthesized nanogranular metallic ultrathin films and time-resolved acousto-optical read-out of the breathing modes frequency shift upon liquid infiltration. A superior sensitivity, exceeding 26 × 103 cm2/g, is predicted upon equivalent areal mass loading of a few ng/mm2. The capability of the present scheme to discriminate among different infiltration patterns is discussed. The platform is an ideal tool to investigate nanofluidics in granular materials and naturally serves as a distributed nanogetter coating, integrating fluid sensing capabilities. The proposed scheme is readily extendable to other nanoscale and mesoscale porous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...